
30th Telecommunications forum TELFOR 2022 Serbia, Belgrade, November 15-16, 2022.

978-1-6654-7273-9/22/$31.00 ©2022 IEEE

Profiling of GNU Radio DVB-S2X transmitter
using multi-core CPU and hardware accelerators

Haris Turkmanović
School of Electrical Engineering

University of Belgrade

Belgrade, Serbia
haris@etf.bg.ac.rs

Lazar Saranovac
School of Electrical Engineering

University of Belgrade

Belgrade, Serbia
laza@etf.bg.ac.rs

Dragomir El Mezeni
School of Electrical Engineering

University of Belgrade

Belgrade, Serbia
elmezeni@etf.bg.ac.rs

Vladimir L. Petrović
School of Electrical Engineering

University of Belgrade

Belgrade, Serbia
petrovicv@etf.bg.ac.rs

Abstract—Software defined radio (SDR) brought flexibility

and easier development to the design of telecommunication

systems. However, achieving real-time performance with SDR

using general purpose processors (GPP) is still a challenging

topic. We have examined performance of SDR DVB-S2X

transmitter implemented in GNU Radio framework using a

multi-core processor with 32 cores. We have found that GNU

Radio framework cannot fully utilize this processor since

overheads of parallelization become bottleneck. When FEC

blocks are offloaded to hardware accelerator, transmitter

achieved the largest throughput for just 8 CPU cores. This

means that there exists optimal number of processing cores for

specific SDR architecture. Maximal achieved throughput for

accelerated DVB-S2X transmitter was 3.4 Gbps. Also,

accelerated architecture provides throughput of 1.8 Gbps for 4

CPU cores which is higher than 1.3 Gbps achieved for 32 CPU

cores and full software implementation.

Keywords—CPU utilization, DVB-S2X, GNU radio,

hardware acceleration, software-defined radio

I. INTRODUCTION

Software defined radio (SDR) introduced unprecedented
flexibility in the design of modern telecommunication
systems. It is just recently that real-time signal processing
became feasible by using only general purpose processors
(GPP). Multiple CPU cores, vector instructions and other
means of acceleration are necessary to achieve the desired
performance. However, in radio applications with strict
requirements for latency, throughput, and power
consumption, the SDR approach is still challenging. This
means that some kind of trade-off between hardware-like
performance and software-like flexibility should be
achieved. Usual approach for commercial applications is to
use custom optimized SDR solution such as Open Air
interface for 5G NR and LTE [1]. There are also proposals
for domain specific languages targeting SDR applications
that can better utilize available hardware resources [2].

The research presented in this paper has been using
GNU Radio. Since increased flexibility usually induces
performance degradations, it is challenging to achieve real-
time performance with GNU Radio on GPP. Nevertheless,
there are many advantages in using such general framework
when developing and researching new applications, ranging
from community support to easier debugging and
reconfiguration of existing designs.

There are dedicated benchmarks developed to enable
easier selection of appropriate processor that can achieve the
best GNU Radio performance. Another approach is to
optimize the processing itself to better use available
hardware resources. The question we are trying to answer in
this paper is: “How can we accelerate GNU Radio
processing on multi-core GPP and what benefits can
hardware acceleration bring?”.

The first step in answering the previous question is
analysis of GNU Radio framework and overheads it
introduces. In GNU Radio framework each block is
implemented in the separate processing thread. Dedicated
scheduler is responsible for deploying these threads to the
actual processing cores. However, even though the work is
split to multiple threads, the parallelization is usually not
that much efficient as synchronization is needed between
different processing blocks. Bloessl et al [3] analyzed GNU
Radio throughput for a large number of simple processing
blocks. They concluded that throughput scales linearly with
increasing the number of blocks. However, they also found
that significant improvements can be achieved by manual
processing organization, thus avoiding framework
synchronization and scheduling mechanisms. Becker et al
[4] used GNU Radio for real-time wireless signal
classification. They found that by using alternative
synchronization mechanisms, based on Qt Signals and Slots,
performance improvement of up to 78× can be achieved.
They also used vector instructions to accelerate separate
processing blocks.

In order to efficiently use multiple processing cores,
sufficient level of parallelism should be exposed. Recently,
Grayver et al [5] presented DVB-S2 demodulator with
4GHz bandwidth using multiple GPP servers. To efficiently
use multiple-cores they used multiple data-path processing
chains to extract parallelism. Miller also used this way of
processing parallelization to develop HDR QPSK modem
using GNU Radio [6]. Cassange et al [2] demonstrated
usage of a custom domain specific language with dedicated
synchronization and parallelization mechanisms. They
demonstrated several times better DVB-S2 receiver
throughput when compared to the gr-dvbs2rx GNU Radio
solution.

In this paper we demonstrate mechanisms how to
achieve the HDR performance on a multi-core processor on
the GNU Radio DVB-S2X transmitter use case, and analyze
the impact of dedicated hardware accelerators on throughput

Digital Object Identifier: 10.1109/TELFOR56187.2022.9983695; Final, published article available at: https://ieeexplore.ieee.org/document/9983695

Personal use is permitted, but republication requires IEEE permission.

and CPU utilization. Section 2 gives a brief overview of
GNU radio framework and its synchronization and
scheduling mechanisms. Section 3 describes implementation
of accelerated DVB-S2X transmitter architecture. In section
4 we evaluate performance of fully software and hardware
accelerated architectures. Conclusion is given in the section
5.

II. GNU RADIO FRAMEWORK

GNU Radio represents a framework that can be used for
development of different SDR applications. Beside library
of already designed DSP blocks with standardized interfaces
framework also supports development of custom DSP
blocks. These blocks are called out of tree (OOT) modules
and can be used to implement new functionalities, which
increases the framework flexibility.

Signal processing blocks chain in GNU Radio is called
“flowgraph”. Each flowgraph contains at least one source
and one sink block. Data flows from source to sink through
all DSP blocks in the chain. Every DSP block has input and
output buffers and is implemented in a separate processing
thread. GNU Radio uses operating system scheduler for
managing thread executions. By using affinity parameter of
DSP block, thread can be statically scheduled to the specific
CPU core. The thread is scheduled for execution if there is
enough data in the input and enough space in the output
buffer. Otherwise, processing is stalled and neighboring
blocks are notified via message passing mechanism. Hence,
each block in a chain waits for previous block to fill its input
buffer in order to start processing. Consequently, the entire
chain throughput is determined by the slowest block.

Since each block is implemented in a separate thread,
flowgraph can be scheduled on a multi-core processor. On
the other hand, such low granularity can lead to frequent
context switching and increase the processing overhead.
One recommendation for optimization is to combine several
functionalities in one larger block [7]. Efficient use of
multiple cores assumes that sufficient number of threads can
be executed independently.

III. ACCELERATION OF DVB-S2X TRANSMITTER

A. DVB-S2X transmitter GNU radio chain

Flowgraph for DVB-S2X transmitter is shown in Fig. 1.
The transmitter is implemented using GNU Radio
framework v3.8 on Ubuntu 20.04 using AMD Ryzen 9
5950X with 32 processing cores. Maximal throughput that
can be achieved for a single transmitter chain is 131 Mbps
with processor utilization of just 160%. This is equivalent to
2 CPU cores, which means that GNU Radio scheduler
cannot efficiently utilize multi-core processor when single
serial flowgraph is used. The reason for this behavior is that
many simple tasks will be blocked while waiting for more
complex tasks to be completed. In the DVB-S2X transmitter
case, these complex tasks are forward error correction
(FEC) encoders, LDPC and BCH [8]. They take almost 70%
of total processor utilization. Also, the flowgraph from
Fig. 1 is relatively small, having only 6 processing blocks,
and scheduler is not able to efficiently use the remaining
CPU cores.

B. Parallel architecture of DVB-S2X transmitter

In order to increase the CPU utilization and throughput
several parallel processing branches can be used [5]. Each
parallel branch is processing a different codeword.
Interleave and deinterleave blocks from GNU Radio library
are used for transferring codewords from serial stream at the
input to parallel branches and to combine results into a
single serial stream at the output. Parallel architecture of
DVB-S2X transmitter for the case of four branches is
presented in Fig. 2.

Since blocks from different branches are working
independently, they can be scheduled on different
processing cores more efficiently. The goal of the first
experiment in this study was to find an optimal number of
parallel branches for DVB-S2X transmitter in the case when
different numbers of CPU cores were available.

C. Accelerated DVB-S2X transmitter

Even though the throughput can be significantly
increased by using parallel branches, the most complex
blocks like FEC encoders still represent a bottleneck for
each branch. To overcome this, the transmitter can be

Fig. 1. DVB-S2X transmitter flowgraph

Fig. 2. Parallel DVB-S2X transmitter flowgraph

further accelerated by offloading these blocks to dedicated
hardware accelerators, eg. PCIe FPGA cards or GPU cards.
If accelerator is fast enough, only one can be used to process
data from all parallel branches. Interleave and detinterlevae
blocks again can be used between parallel and serial stream
conversions. These components also emulate data copying
to and from the accelerator. If accelerator processes stream
of data with the same throughput as the rest of software
chain, then it can be modeled as a simple connection
between interleave and deinterleave components.
Architecture of DVB-S2X transmitter with accelerated FEC
blocks is shown in Fig. 3.

By accelerating the most complex blocks, the rest of the
flowgraph becomes more balanced and can be efficiently
scheduled. The goal of the second experiment was to find
the number of CPU cores needed to achieve the maximal
throughput of the transmitter with FEC acceleration.

IV. RESULTS AND DUISCUSSION

In order to evaluate performance of the examined
architectures CPU utilization and achieved transmitter
throughput were measured. CPU utilization was measured
by using htop tool and it is expressed in percent ranging
from 0 to 3200 in case of 32 cores. Number of cores
available to GNU Radio application can be limited by using
taskset command in Linux. Throughput is measured directly
from GNU Radio by using Probe Rate block. Running
average gain was set to 0.01 and each measurement was
taken by averaging results obtained from different runs of
GNU Radio applications. This way the influence of different
states of a cache and different states of operating system can
be reduced. GNU Radio scheduler was set to Normal
priority, and VOLK acceleration is not used.

Throughput and CPU utilization for parallel transmitter
architectures with different number of parallel branches,
with different number of available CPU cores, are shown in
Fig. 4 and Fig. 5 respectively.

Maximal throughput for parallel DVB-S2X transmitter
was 1.3 Gbps and it is achieved for 20 parallel branches in
case when all 32 processing cores were available. However,
slightly lower throughput of 1.2 Gbps can be achieved for
the same number of parallel branches by using just 16
processor cores. Hence, for this architecture it is worth
considering the usage of simpler processor or freeing
processor resources for some other processing tasks.

Increasing number of parallel branches exposes more
parallelism and enables higher throughput. However, when
processing load exceeds available resources CPU utilization
enters saturation. In the case of 4 CPU cores, utilization

reaches 400% for 4 parallel branches and throughput
increase stops. When there are 8 CPU cores available, CPU
utilization reaches 785% for 10 parallel branches and stays
in this high utilization region. For 16 and 32 CPU cores,
CPU utilization saturates before CPU reaching maximal
values of 1600% and 3200% and even starts to drop when
number of parallel branches is further increased. The reason
for this behavior is a new bottleneck introduced in parallel
architectures. Namely, although there are parallel branches
enabling larger throughput, Interleave and deinterleave
components still operate in serial manner. Their load
increases with throughput and they become bottlenecks
when more than 24 parallel branches are used. Interleave
and deinterleave components can be implemented as simple
data switches, and thus their complexity should be minimal.
In software they just need to forward data pointers for
current codeword to the appropriate processing branch.
However, in GNU Radio, these blocks are copying all data
elements from memory to component buffers. Copy
operation takes significant amount of time especially in case
with large number of parallel branches. Hence,
implementing OOT module that work with pointers instead
of using library components can potentially increase
throughput.

Fig. 3. DVB-S2X transmitter with emulation of accelerated FEC blocks

Fig. 4.Throughput for parallel DVB-S2X transmitter

Fig. 5. CPU utilization for parallel DVB-S2X transmitter

For smaller number of parallel branches lower number
of processing cores can provide higher throughput. For
example, in the case of 6 parallel branches, throughput of
692 Mbps can be achieved with 8 processing cores while it
drops to 626 Mbps when all 32 cores are used. This can be
explained by inefficiency of GNU Radio scheduler when
number of cores largely exceeds processing load. In this
case, scheduler will more frequently switch processing tasks
from one core to another, introducing additional overhead
and thus decreasing the throughput. This can be confirmed
by statically scheduling processing blocks using affinity
parameter of GNU Radio blocks. In this case increasing
number of cores will not decrease the throughput. However,
throughput achieved with static scheduling is lower than by
dynamic scheduling mechanism.

Throughput and CPU utilization for accelerated
DVB-S2X transmitter architecture are shown in Fig. 6 and
Fig. 7 respectively.

Maximal throughput for accelerated DVB-S2X
transmitter was 3.4 Gbps and it is achieved for 8 parallel
branches in a case when just 8 processing cores were used.
Furthermore, the achieved throughput for 8 cores is larger
than for any other number of cores for all configurations of
parallel branches. This result is very interesting and shows
that there exists optimal architecture for a specific
flowgraph. In accelerated DVB-S2X transmitter there are 4
simple blocks in parallel branches and 4 serial blocks
(interleave and deinterleave). This architecture can
optimally fit 8 cores when serial tasks are implemented in
the separate cores while parallel blocks share the remaining
4 cores. Since number of cores is limited there will be less
thread and context switching. By examining CPU
utilization, we can notice that in the case of 8 cores, it
saturates to lower level than in the case of DVB-S2X
transmitter without acceleration.

When only 4 CPU cores are available, the utilization
reaches 379% for 4 parallel branches and maximal achieved

throughput is 1.8 Gbps. This is still higher than maximal
throughput achieved for all-software transmitter with 32
cores. For 16 CPU cores maximal achieved throughput is
2.9 Gbps for 6 parallel branches, while throughput of
2.2 Gbps is achieved for 8 parallel branches and 32 CPU
cores. Further increase of parallelism leads to lower
throughput since interleave and deinterleave components
become bottlenecks.

V. CONCLUSION

In this paper we examined the influence of varying
number of parallel branches and number of available CPU
cores to the performance of DVB-S2X transmitter with and
without hardware acceleration.

We found that in case of fully software implementation,
transmitter achieves throughput of 1.2 Gbps for 16 CPU
cores and 20 parallel branches. This is just a slight penalty
when compared to the case when all 32 cores were used.
Hence, there is a limit of number of parallel branches and
processing cores for this architecture.

When FEC modules are accelerated in hardware,
aforementioned effects are much stronger since the
remaining flowgraph is more balanced. Maximal throughput
of 3.4 Gbps is achieved for just 8 parallel branches and 8
processing cores. Accelerated architecture provides larger
throughput for 4 cores than software architecture with all 32
cores.

Accelerating DVB-S2X transmitter by implementing
FEC encoders in hardware can significantly increase a
throughput and enable usage of less powerful processors
which are usually available in SoC solutions.

ACKNOWLEDGMENT

The authors acknowledge the support of the Science
Fund of the Republic of Serbia, grant No 7750284, Hybrid
Integrated Satellite and Terrestrial Access Network - hi-
STAR.

REFERENCES

[1] N. Nikaein, M. K. Marina, S. Manickam, A. Dawson, R. Knopp, and
C. Bonnet. "OpenAirInterface: A flexible platform for 5G research."
ACM SIGCOMM Computer Communication Review 44, no. 5, 2014,
pp. 33-38.

[2] A. Cassagne, R. Tajan, O. Aumage, C. Leroux, D. Barthou and C.
Jégo. "A DSEL for High Throughput and Low Latency Software-
Defined Radio on Multicore CPUs." arXiv preprint arXiv:2206.06147
2022.

[3] B. Bloessl, M. Müller and M. Hollick. "Benchmarking and Profiling
the GNURadio Scheduler." In Proceedings of the GNU Radio
Conference, vol. 4, no. 1. 2019.

[4] C. Becker, A. Baset, S. Kasera, K. Derr and S. Ramirez, "Experiences
with using GNU Radio for real-time wireless signal classification." In
Proceedings of the GNU Radio Conference, vol. 3, no. 1. 2018.

[5] E. Grayver and A. Utter. "Extreme Software Defined Radio–GHz in
Real Time." In 2020 IEEE Aerospace Conference, 2020, pp. 1-10.

[6] D. Miller, "Demonstration of GNU Radio High Data Rate QPSK
Modem at 15.0 Mbps Real-Time with Multi-Core General Purpose
Processor", In Proceedings of the GNU Radio Conference, 2022.

[7] T. W. Rondeau, O. Holland, H. Bogucka, and A. Medeisis. "On the
GNU radio ecosystem." Opportunistic Spectrum Sharing and White
Space Access: The Practical Reality, 2015, pp. 25-48.

[8] ETSI, “Digital Video Broadcasting (DVB)”,

https://www.dvb.org/standards/dvb-s2

Fig. 6. Throughput for accelerated DVB-S2X transmitter

Fig. 7. CPU utilization for accelerated DVB-S2X transmitter

